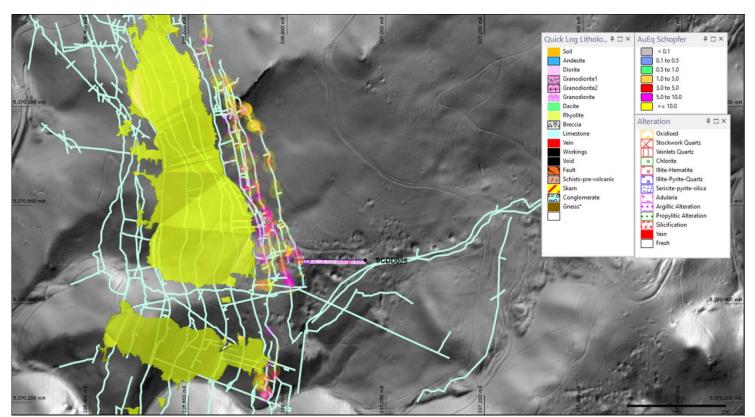


26 September 2022

SCHOPFER - GOLD-SILVER DRILLING RESULTS

- Schopfer Phase 2 surface drilling has been completed and results returned.
- Drillhole SCDD025 intersected gold and silver mineralisation in the main Schopfer vein (5.4m downhole length) and in a hanging wall stockwork (29.4m downhole length)
- Best intercepts; hanging wall stockwork:
 - o 1.0m @ 1.78 g/t Au, 21 g/t Ag from 569.0m
 - o 2.2m @ 1.08 g/t Au, 112 g/t Ag from 572.0m, Incl.
 - 1.2m @ 1.67 g/t Au, 183 g/t Ag from 573.0m
- · Best intercepts; Schopfer vein:
 - o 3.9m @ 0.45 g/t Au, 31 g/t Ag from 594.6m, Incl.
 - o 1.8m @ 0.53 g/t Au, 42 g/t Ag from 595.1m

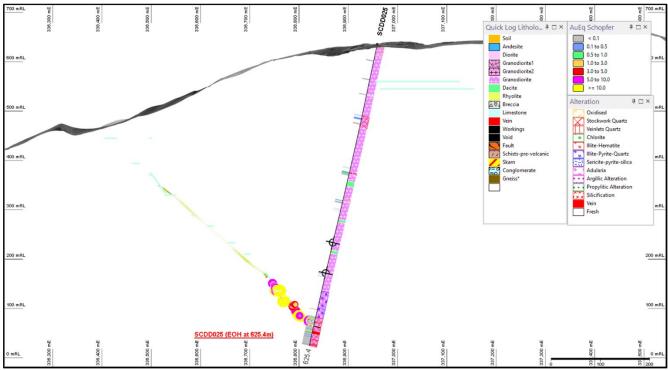
The Directors of Prospech Limited ('Prospech' or 'the Company') (ASX: PRS) are pleased to report results for Phase 2 drilling at the Schopfer gold-silver prospect within the Hodrusa exploration licence, located in the Central Slovakian neovolcanic belt.

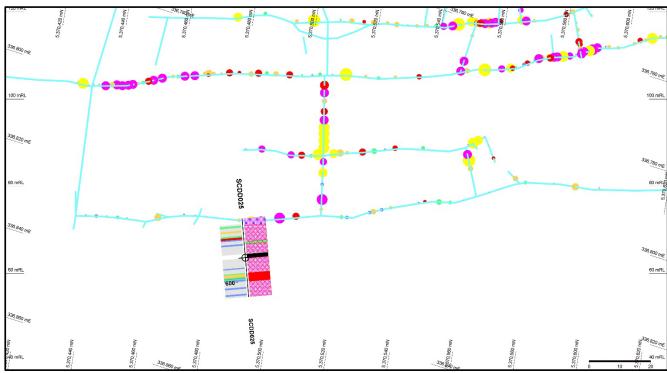


The Schopfer structure is open to the northwest and southeast and at depth.

The Schopfer vein has estimated historical production of 1 million tonnes at 2 to 5 g/t gold and 200 to 500 g/t silver for a total 64 to 160k ounces of gold and 6 to 16 million ounces of silver. Although the Schopfer Vein structure is visually strong, and there is a significant thickness of stockwork veining in the hanging wall, it is clear from the assays that SCDD025 missed one of the high-grade shoots evidenced by the historical underground sampling.

A total of 20 BQ diamond core holes were completed in 2018 averaging 5 metres in depth using a handheld portable diamond rig. Previously, four surface diamond holes were completed in 2017, targeting the Luisa Shoot 500m south of the current target area under the 'Main' shoot. Previously reported results (refer PRS:ASX Announcement 5 July 2022) from the BQ Underground micro-drilling drilling include:


SCDD001: 2.8m @ 2.2 g/t Au and 151 g/t Ag from 0.6m 0.9m @ 1.9 g/t Au and 188 g/t Ag from 0.0m SCDD002: SCDD003: 3.0m @ 2.5 g/t Au and 233 g/t Ag from 0.0m 1.5m @ 5.6 g/t Au and 258 g/t Ag from 0.0m SCDD004: SCDD015: 3.0m @ 1.0 g/t Au and 101 g/t Ag from 0.0m SCDD020: 1.0m @ 2.0 g/t Au and 136 g/t Ag from 0.0m SCDD021: 1.6m @ 2.7 g/t Au and 478 g/t Ag from 0.0m SCDD022: 0.9m @ 2.3 g/t Au and 236 g/t Ag from 1.0m 1.9m @ 1.7 g/t Au and 180 g/t Ag from 1.0m SCDD023: SCDD024: 5.0m @ 2.9 g/t Au and 401 g/t Ag from 0.0m


SCDD025 was designed to test the strike and depth potential of a fully preserved silver and base metal mineralised system under the currently named, 'Main' shoot. Historic grades of at least 5.0 g/t AuEq¹ are shown in magenta.

-

¹ Gold is deemed to be the appropriate metal for equivalent calculations as gold is the most common metal to all mineralisation zones. Schopfer gold equivalent grades are based on assumptions: AuEq(g/t)=Au(g/t)+80/Ag(g/t) calculated from December 2021 spot prices of US\$22/oz silver, US\$1800/oz gold. These individual underground back channels are not able to accessed physically and cannot be currently used in standard JORC reporting and for this reason no metallurgical recoveries have been applied for the Au Equivalents which are utilised and represented for targeting purposes only.

SCDD025 tested the historic Schopfer mine based on historic underground micro-drilling by Prospech, historic production records and surface drilling.

Plane of the vein view of grade distribution is well understood at depth on the unmined portions of the Schopfer system. Further drilling from surface or future underground development can be permitted in the future.

Prospech Managing Director Jason Beckton comments:

"Results for Schopfer, although encouraging must now compete with other prospects including the LANF and Pukanec targets currently permitted for drilling in the current calendar year. Schopfer remains important to the Company, with large tonnage potential. A planned resource drill out is subject to other drilling priorities in 2022 - 2023.

The next drilling results to be reported include the detachment fault (or LANF) which the Company drilled at the end of August. The LANF hosts the neighbouring Rozalia gold mine which has an average head grade of 12 g/t Au."

This announcement has been approved by the Managing Director, Jason Beckton.

For further information, please contact:

Jason Beckton Managing Director Prospech Limited +61 (0)438 888 612

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Jason Beckton, who is a Member of the Australian Institute of Geoscientists. Mr Beckton, who is Managing Director of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

pjn11374

JORC Code, 2012 Edition – Table 1 Schopfer, Hodrusa

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock chip grab samples were collected from outcrops, spoil heaps and accessible surface and underground workings of quartz veins, and zones of silicification, within Neogene volcanics under the supervision of a qualified geologist. Sample locations were surveyed with a handheld GPS and marked into sample books.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond HQ, NQ and BQ drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core is measure in the triple tube split for HQ and NQ only - before laying in the core boxes to ensure minimum disturbance and most accurate calculation of core recoveries. Overall core recoveries have been very high at 98%. Any relationship between core recovery and grade cannot be determined at this time, but due to the high core recovery, bias is considered very unlikely
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The complete core is logged in detail by qualified geologists. Core is photographed wet and dry. All core is oriented. Detail structural measurements are collected. Core logging is a combination of qualitative and quantitative information
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Approximately 1 to 2 Kg of material from each rock chip was sent to the laboratory for analysis. All sampling done under supervision of a qualified geologist.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld 	 Samples are stored in a secure location in Companies storage facilities and transported to the ALS laboratory in Romania for sample preparation of fine crush, riffle split and pulverizing of 1kg to 85% < 75µm. Pulps are analysed by ALS Romania using method

Criteria	JORC Code explanation	Commentary
	XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	code ME-ICP61, a 33 element determination using a four acid digestion and 30 gram charge fire assay with AA finish (Au-AA25) for gold. Ore grades are analysed by OG62 – 4 acid digestion method for each element when identified.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Laboratory provides assay certificates, which are stored electronically both in ALS and Company's servers. Laboratory CSV files are merged with GPS Location data files using unique sample numbers as the key. No adjustments made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chip samples are located using handheld GPS receivers with accuracy from 10-5m. UTM projection WGS84 Zone 34N and local grid SJTSK03. Conversion between local and UTM grid is run through national certified web portal. The topographic control, using handheld GPS, was adequate for the survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Reconnaissance sampling of available outcrop. Results will not be used for resource estimation. No compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No bias is believed to be introduced by the sampling method.
Sample security	The measures taken to ensure sample security.	 Samples were delivered to ALS Minerals laboratory in Romania by Prospech trusted contractor and were not left unattended at any time. There were no incident reports from ALS lab on sample receiver cell.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Prospech Limited, through subsidiaries and contractual rights, holds 100% rights on the Hodrusa-Hamre - Banska Stiavnica, Nova Bana, Rudno, Pukanec and Jasenie tenements. The laws of Slovakia relating to exploration and mining have various requirements. As the exploration advances specific filings and environmental or other studies may be required. There are ongoing requirements under Slovakian mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Prospech's environmental and permit advisors specifically engaged for such purposes. The Company is the manager of operations in accordance with generally accepted mining industry standards and practices.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Anciently, the target was silver, the currency of the day, and more recently, during the Communist era, the targets were industrial base metals, copper, lead, zinc and others. As a result, much of the country, including the Company's exploration license areas, has not been subject to modern western exploration methodology or exploitation.

Criteria	JORC Code explanation	Commentary					
		times and Spania as 2000 copper. The second content of the second of the	nd earlier. Dolina, no 1-1700 BC and silver cond older at Banska f their mir festival everated for ate today. Inist era b tial and s al importe out. Coa ite, zeolite on Slovakia party mini tion licens	Tools user Bans Major Occurred mining as Stiavnining herivery year over six masse met melting of from Hill, gold, some stone and indicate a today, ang lease se, the Ritrucking	sed by picka Bystri production of the control of th	ory dating to Celtic rehistoric miners at ica are dated as early on of metals (primarily the medieval period. In the world is ne local population is ding a three day int at nearby Kremnica years and continues and production was ium and nickel and Albania) was , anhydrite and te and gravel), inerals are being arground gold mine on d within the HHBS ine, continues in /flotation concentrate	
Geology	 Deposit type, geological setting and style of mineralisation. 	Central Explora banded sulphidi associa gold an	Slovakiar tion Licer , low-sulp c "ginguro ted with h	n Volcan nce cove hidation o" zones nigh grad ulphide r	ic Belt, th rs quartz epitherm , which a les of pre	ovolcano within the ne Hodrusa veins with classically nal textures with re commonly scious metals. Native were observed in the	
Drill hole	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	Drill Hole Collar Information (All WGS84 Zone 34N)					
Information		Hole_ID UTM_East UTM_North RL Max_Depth					
		SCDD025 336958.6 5370488.4 634.55 625.4					
		Drill Hole Survey Information (UTM Mag Declination 6.8)					
		NB – a total of 208 survey readings by electronic gyroscope to ensure not interference with known magnetic units. For brevity sake we include only every 100m reading.					
	 hole length. 	Hole_ID	Depth	Dip	G_Azim	UTM_Azimuth	
	 If the exclusion of this information is justified on the basis that the information is not Material 	SCDD025	0	-77.9	265.2	272.0	
	and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the	SCDD025	99	-78.2	263.6	270.4	
		SCDD025	201	-77.4	262.7	269.5	
	case.	SCDD025	300	-76.9	263.2	270.0	
		SCDD025	399	-76.7	263.8	270.6	
		SCDD025	501	-76.9	260.8	267.6	
		SCDD025	600	-77.0	260.7	267.5	
		SCDD025	615	-77.1	260.3	267.2	
		SCDD025 A	ssay Res	sults			

•	IIIIeiita				
Au_ppm	Ag_ppm	SampleID	mTo	mFrom	Hole_ID
0.03	3.4	M665257		33	SCDD025
0.14	23.2	M665258		34	SCDD025
0.05	19.4	M665259		72	SCDD025
0.02	0.7	M665260	74	72.9	SCDD025
0.02	0.5	M665261	104	103	SCDD025
0.01	0.9	M665262		104	SCDD025
0.11	1.4	M665263		147	SCDD025
0.13	2.8	M665264		152	SCDD025
0.16	1.7	M665265		153	SCDD025
0.16	1.3	M665266	154.8	154	SCDD025
0.34	2.8	M665267		154.8	SCDD025
0.01	0.5	M665268		163	SCDD025
	-				
0.01	0.5	M665269		164	SCDD025
0.02	0.9	M665270		165	SCDD025
0.03	3.5	M665271	257	256	SCDD025
0.04	0.6	M665272		264	SCDD025
0.33	52.9	M665273		264.5	SCDD025
0.14	18.4	M665274		265.1	SCDD025
0.13	15.1	M665276		265.6	SCDD025
0.09	3.7	M665277		266.3	SCDD025
0.22	28	M665278	268	267	SCDD025
0.19	28.6	M665279		268	SCDD025
0.19	-0.5				
	-	M665280		268.8	SCDD025
0.02	-0.5	M665281		270	SCDD025
0.02	-0.5	M665282	272	271	SCDD025
0.45	23.9	M665283		323	SCDD025
0.34	9.8	M665284	$\overline{}$	324	SCDD025
0.07	2.7	M665285		327	SCDD025
0.04	1	M665286	$\overline{}$	328	SCDD025
0.06	2.3	M665287		329	SCDD025
0.08	3.6	M665288	342.5	342	SCDD025
0.05	4.4	M665289		345.3	SCDD025
0.07	2	M665290		477	SCDD025
0.02	1.2	M665291		482.1	SCDD025
0.01	0.8	M665292		550	SCDD025
0.01	-0.5	M665293	566	565	SCDD025
0.57	22.5	M665294		566	SCDD025
					SCDD025
0.01	-0.5	M665295		567	
0.01	-0.5	M665296		568	SCDD025
1.78	21	M665297	570	569	SCDD025
0.01	-0.5	M665298	571	570	SCDD025
0.01	0.5	M665299		571	SCDD025
0.38	25.9	M665301		572	SCDD025
_					
1.67	183	M665302		573	SCDD025
0.13	14.6	M665303	575	574.2	SCDD025
0.02	2.7	M665304	576	575	SCDD025
0.01	0.9				SCDD025
		M665305		576	
0.15	18.8	M665306	$\overline{}$	577	SCDD025
0.01	1.3	M665307	579	578	SCDD025
0.03	1.9	M665308		579	SCDD025
0.01	0.9	M665309	$\overline{}$	580	SCDD025
0.05	1.7	M665310	582	581	SCDD025
0.03	1.4	M665311	583.1	582	SCDD025
0.02	0.7	M665312		585.7	SCDD025
0.04	3.8	M665313			
				587	SCDD025
0.03	1	M665314		589	SCDD025
0.03	2.5	M665315	$\overline{}$	590	SCDD025
0.12	10.7	M665316	592	591.3	SCDD025
0.02	1	M665317		592	SCDD025
0.03	2.2	M665318		593	SCDD025
0.53	22.6	M665319		594.6	SCDD025
0.62	38.7	M665320	$\overline{}$	595.1	SCDD025
0.48	43	M665321	596.9	595.7	SCDD025
0.32	30.8	M665322	597.4	596.9	SCDD025
0.25	10.2	M665323		597.4	SCDD025
0.4	23.5	M665324		597.9	SCDD025
0.24	9.7	M665326	$\overline{}$	598.5	SCDD025
0.23	0.6	M665327		599	SCDD025
0.02	0.9	M665328	600	599.5	SCDD025
0.03	1.7	M665329		600	SCDD025
			-		-
0.03	1.6	M665330		601	SCDD025
0.03	1.5	M665331		602	SCDD025
0.17	25.8	M665332	604	603	SCDD025
0.02	0.8	M665333	605	604	SCDD025
0.04	0.9	M665334		605	SCDD025
0.03	1.9	M665335			SCDD025
				606	. 3 - 0 0 0 0 2 5
0.07	2.8	M665336			$\overline{}$
	1.7	14000333		607	SCDD025
0.06		M665337	609	608	SCDD025 SCDD025
0.06	1.2	M665338	609		SCDD025
0.03		M665338	609 610	608 609	SCDD025 SCDD025 SCDD025
0.03 0.02	1.2	M665338 M665339	609 610 611	608 609 610	SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03	1.2 0.7	M665338 M665339 M665340	609 610 611 612	608 609 610 611	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02	1.2	M665338 M665339	609 610 611 612	608 609 610	SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03	1.2 0.7	M665338 M665339 M665340	609 610 611 612 613	608 609 610 611	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03	1.2 0.7 1.3 0.9	M665338 M665339 M665340 M665341 M665342	609 610 611 612 613 614	608 609 610 611 612 613	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03 0.04	1.2 0.7 1.3 0.9 1.1	M665338 M665339 M665340 M665341 M665342 M665343	609 610 611 612 613 614 615	608 609 610 611 612 613	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03 0.04 0.02	1.2 0.7 1.3 0.9 1.1 0.6	M665338 M665339 M665340 M665341 M665342 M665343 M665344	609 610 611 612 613 614 615 616	608 609 610 611 612 613 614 615	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03 0.04	1.2 0.7 1.3 0.9 1.1	M665338 M665339 M665340 M665341 M665342 M665343	609 610 611 612 613 614 615 616	608 609 610 611 612 613	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03 0.04 0.02	1.2 0.7 1.3 0.9 1.1 0.6	M665338 M665339 M665340 M665341 M665342 M665343 M665344	609 610 611 612 613 614 615 616 617	608 609 610 611 612 613 614 615	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.03 0.04 0.02 0.04	1.2 0.7 1.3 0.9 1.1 0.6 0.6	M665338 M665339 M665340 M665341 M665342 M665343 M665344 M665345 M665346	609 610 611 612 613 614 615 616 617 618	608 609 610 611 612 613 614 615 616	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.06 0.06	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1	M665338 M665340 M665341 M665342 M665343 M665344 M665344 M665345 M665345	609 610 611 612 613 614 615 616 617 618 619	608 609 610 611 612 613 614 615 616 617 618	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.06 0.06 0.04	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9	M665338 M665340 M665341 M665342 M665343 M665344 M665344 M665345 M665345 M665347 M665348	609 610 611 612 613 614 615 616 617 618 619 620	608 609 610 611 612 613 614 615 616 617 618	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.06 0.06 0.04 0.006	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9 1.1 0.9	M665338 M665340 M665341 M665342 M665343 M665344 M665344 M665345 M665345	609 610 611 612 613 614 615 616 617 618 619 620	608 609 610 611 612 613 614 615 616 617 618	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.06 0.06 0.04	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9	M665338 M665340 M665341 M665342 M665343 M665344 M665344 M665345 M665345 M665347 M665348	609 610 611 612 613 614 615 616 617 618 619 620 621	608 609 610 611 612 613 614 615 616 617 618	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.02 0.04 0.06 0.06 0.04 0.006	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9 1.1 0.9	M665338 M665339 M665340 M665341 M665342 M665343 M665344 M665345 M665346 M665347 M665348 M665349	609 610 611 612 613 614 615 616 617 618 619 620 621	608 609 610 611 612 613 614 615 616 617 618 619 620	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025
0.03 0.02 0.03 0.03 0.04 0.04 0.06 0.06 0.04 0.03 0.03	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9 1.1 0.6 0.9	M665338 M665340 M665341 M665342 M665343 M665344 M665345 M665345 M665347 M665348 M665349 M665349 M665349	609 610 611 612 613 614 615 616 617 618 619 620 621 622	608 609 610 611 612 613 614 615 616 617 618 619 620 621	SCD0025 SCD0025
0.03 0.02 0.03 0.03 0.04 0.04 0.06 0.06 0.06 0.04 0.03	1.2 0.7 1.3 0.9 1.1 0.6 0.6 1 0.9 1.1 0.6	M665338 M665340 M665341 M665342 M665343 M665344 M665345 M665346 M665347 M665348 M665349 M665349	609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624	608 609 610 611 612 613 614 615 616 617 618 619 620	SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCDD025 SCD0025 SCD0025 SCD0025 SCD0025 SCD0025 SCD0025 SCD0025

JORC Code explanation

Data aggregation methods

Criteria

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.

• Where aggregate intercepts incorporate short

A minimum sample length is 0.4m generally. Intercepts are geological in that no bulk and carry rules are applied to the geological boundary of the quartz vein metal host only.

Commentary

Metal equivalents are used only for graphical purposes due to the age of the silver gold assaying completed in

Criteria	JORC Code explanation	Commentary
	lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	the past (1950s) in which silver and gold were assayed and a silver factor applied. This occurs for the long sections and plans views depicting previous sampling. No numeric gold silver equivalents are reported in the Prospech generated data despite a long history of ore processing suggesting recoveries of gold of 95% and silver of 91% using standard flotation techniques.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Mineralisation is epithermal vein related.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 The location and results received for some drill-core samples are displayed in the attached maps and/or tables. Coordinates are UTM Zone 34N.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results for all samples collected in this program are displayed on the attached maps and/or tables.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No metallurgical or bulk density tests were conducted at the project by Prospech. Significant historical production up to 1950 has been record and recovery of metals (floatation and smelting) is now the same technology with modern improvements, with flotation circuit running by third party company at the Schopfer Adit, but processing ore from the Rozalia Mine 5km East.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Prospech proposes to carry out a review of the Schopfer vein in preparation for definition of a possible resource in the 2023 field season.