

20 February 2025

HIGH-GRADE REE ZONES AT KORSNÄS CONTINUE TO EXPAND WITH OUTSTANDING DRILL RESULTS

Highlights:

- Latest assays confirm the continuity and scale of high-grade REE mineralisation at Korsnäs - results reinforce resource growth
- New data to be incorporated into a revised resource estimate
- Excellent correlation with modern drilling validating historical data and expanding confidence in the deposit
- Significant high-grade intercepts include:
- SO-021: 11.9m @ 11,010 ppm TREO¹ (NdPrO² 3,295 ppm)
including 5.1m @ 17,790 ppm TREO (NdPrO 5,682 ppm)
- SO-017: 34.1m @ 5,685 ppm TREO (NdPrO 1,235 ppm)
including 9.1m @ 10,088 ppm TREO (NdPrO 2,011 ppm)
- SO-076: 17.9m @ 8,169 ppm TREO (NdPrO 2,526 ppm)
including 6.4m @ 17,383 ppm TREO (NdPrO 5,513 ppm)
- KR-287³: 6.3m @ 13,802 ppm TREO (NdPrO 3,604 ppm)
including 1.6m @ 44,667 ppm TREO (NdPrO 11,761 ppm)
- Heavy rare earth enrichment - notably Terbium (Tb₄O₇) up to 59.2 ppm and Dysprosium (Dy₂O₃) up to 207.8 ppm, reinforcing the deposit's strategic value
- More results on the way - an additional 295 samples are currently being analysed

Prospech Managing Director, Jason Beckon, commented:

"Korsnäs continues to deliver outstanding results, reaffirming the consistency and scale of these high-grade zones. With these results and further samples currently being assayed, our geologic modelling of the deposit continues to improve which we and we anticipate will support an updated, improved resource estimate.

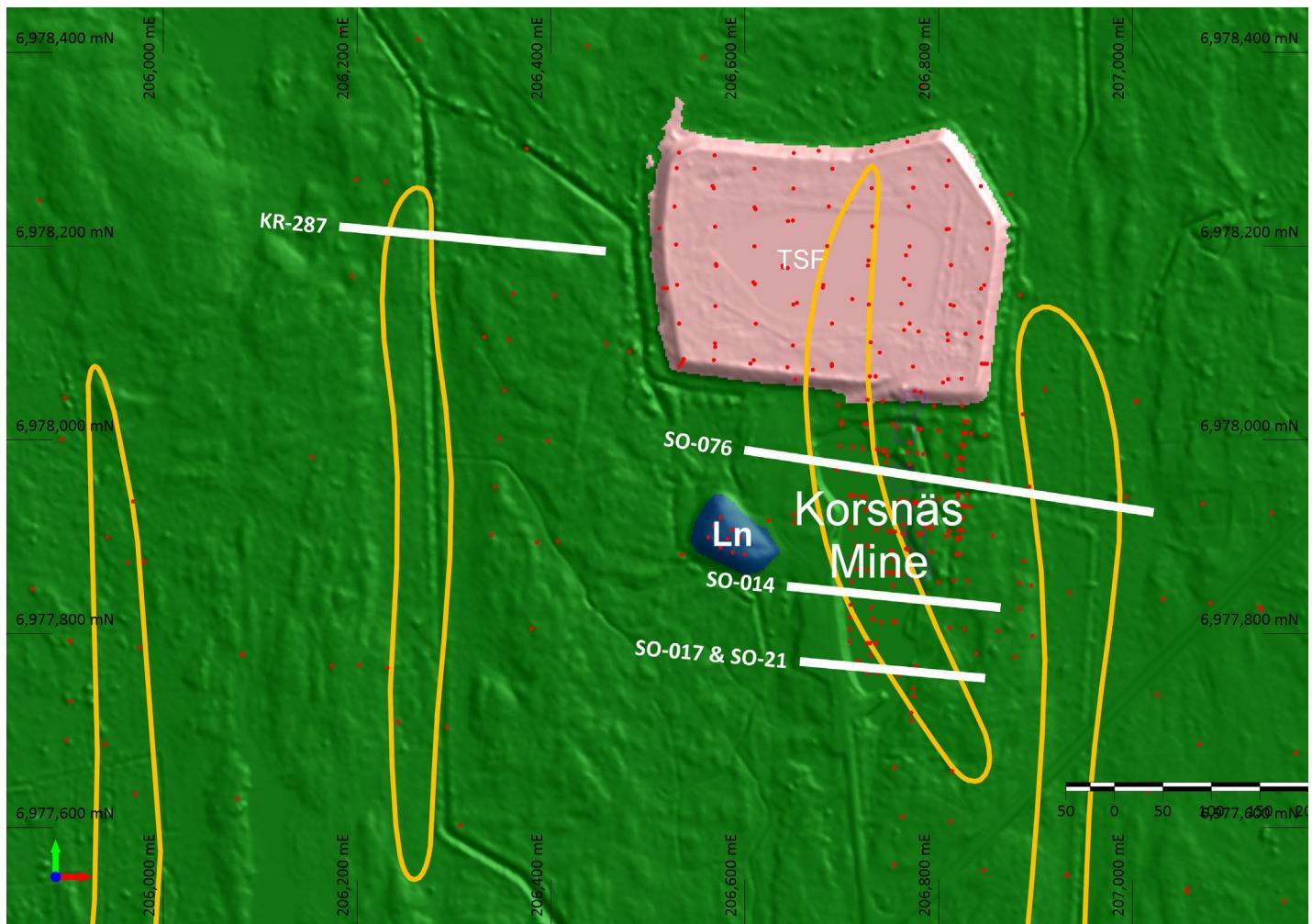
Meanwhile, metallurgical test work is advancing successfully. Hard rock core sampling is now underway at the Geological Survey of Finland (GTK Mintec), while tailings samples are being analysed at the Mining School Oulu laboratories. Our Finland Manager is on-site at GTK Mintec this week, ensuring steady progress. This work is being conducted as part of the REMHub consortium, supported by the Horizon Europe grant, showcasing the collaborative efforts driving the project forward.

We remain on track for a series of key updates in the coming weeks as new assay results and metallurgical data become available."

¹ TREO = Total Rare Earth Oxides which is the sum of La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃ and Y₂O₃.

² NdPrO = the sum of Pr₆O₁₁, Nd₂O₃ and NdPr enrichment % = NdPrO / TREO.

³ Previously reported hole. Additional new assays to close off intersections.


Level 2, 66 Hunter Street, Sydney NSW 2000 Australia

Prospech Limited (ASX: PRS, **Prospech or the Company**) is pleased to announce further assay results from the ongoing program of sampling and assaying of the historic Korsnäs drill core from holes completed in the 1950s, 60s and early 70s.

The Geological Survey of Finland (**GTK**) has meticulously preserved drill core from 471 historical drill holes, which has now been successfully validated through recent Prospech diamond drilling. In parallel, 295 additional samples are currently being analysed, with results anticipated in February-March, marking the completion of this phase of resampling and assaying.

Originally mined for lead, Korsnäs is now recognised for its extensive rare earth element (**REE**) mineralisation, which remains open both along strike and at depth. The deposit comprises a network of layered carbonatite zones, each reaching up to 20 metres thick, spaced 50 to 400 metres apart across strike. These REE-rich zones show a strong correlation with gravity anomalies, highlighted as yellow ellipses in Figure 1. To date, five key anomalies have been identified, spanning more than five kilometres of strike, further underscoring the project's substantial exploration potential.

Figure 1. Map showing the locations of drill sections presented in the following figures at Korsnäs. Gravity-low anomalies, which correlate well with near-surface mineralisation, are highlighted by yellow ellipses. The Tailings Storage Facility (TSF), Lanthanide Concentrate Stockpile (Ln) and all drill collars (red dots) are also shown.

Below is a table of assay intersections from the current batch of sampling historical drill holes.

Hole_Id	From	To	Thick	TREO	NdPrO_ppm	NdPrO enrich	Tb ₄ O ₇ _ppm	Dy ₂ O ₃ _ppm
SO-014	19.37	47.60	28.23	4,960	1,392	28%	7.7	28.3
SO-014 including	19.37	21.97	2.60	11,529	3,521	31%	18.4	65.6
SO-017	2.70	36.83	34.13	5,685	1,235	22%	5.7	22.4
SO-017 including	2.70	11.75	9.05	10,088	2,011	20%	8.1	33.6
SO-021	9.32	21.20	11.88	11,010	3,295	30%	20.5	72.1
SO-021 including	16.09	21.20	5.11	17,790	5,682	32%	36.5	127.7
SO-076	30.30	48.20	17.90	8,169	2,526	31%	16.1	57.7
SO-076 including	37.40	43.80	6.40	17,383	5,513	32%	35.2	124.6
SO-077	23.00	93.30	70.30	2,594	702	27%	5.0	19.4
SO-077 including	74.60	76.90	2.30	12,554	3,511	28%	19.9	67.2
SO-121	0.00	3.20	3.20	9,148	2,810	31%	18.1	64.1
SO-121 including	0.00	1.00	1.00	22,302	6,957	31%	45.0	157.3
SO-130	0.00	37.15	37.15	2,144	573	27%	3.5	13.3
SO-130	45.75	47.25	1.50	3,118	775	25%	4.8	16.1
SO-131	0.00	4.45	4.45	9,729	3,033	31%	19.4	68.6
SO-131 including	0.00	2.55	2.55	14,161	4,437	31%	28.3	100.3
SO-133	7.30	10.30	3.00	9,633	2,932	30%	20.8	81.7
SO-133 including	8.30	10.30	2.00	13,568	4,177	31%	28.3	106.0
SO-170	38.23	39.20	0.97	2,383	629	26%	4.2	16.8
SO-171	14.20	16.51	2.31	1,898	419	22%	2.3	10.0
SO-182	0.00	6.40	6.40	4,840	1,424	29%	8.2	31.0
SO-182	14.00	23.85	9.85	6,210	1,772	29%	9.5	35.5
SO-182 including	16.35	18.60	2.25	10,821	3,247	30%	18.2	69.5
SO-182 and incl.	22.60	23.85	1.25	14,141	4,229	30%	22.2	80.9
SO-184	0.00	3.30	3.30	1,804	515	29%	3.6	12.9
KR-237	No significant intersection							
KR-277	106.00	110.50	4.50	2,182	447	21%	2.3	11.1
KR-287	61.15	93.08	31.93	2,714	687	25%	4.0	15.2
KR-287 including	71.00	73.42	2.42	6,289	1,725	27%	9.4	34.2
KR-287 and incl.	84.18	91.80	7.62	5,611	1,447	26%	7.8	28.0
KR-287	106.85	113.10	6.25	13,802	3,604	26%	18.8	66.2
KR-287 including	107.85	109.40	1.55	44,667	11,761	26%	59.2	207.8
KR-287 and incl.	112.70	113.10	0.40	23,759	6,215	26%	35.4	122.8
KR-287	138.75	143.30	4.55	2,366	610	26%	4.3	16.6
KR-287	167.40	167.95	0.55	1,795	363	20%	2.8	11.0
KR-287	172.60	186.70	14.10	1,875	467	25%	2.7	11.3
KR-287	199.00	200.30	1.30	1,519	317	21%	1.7	7.5

Table 1 - REE mineralised zones (>1,000 ppm TREO).

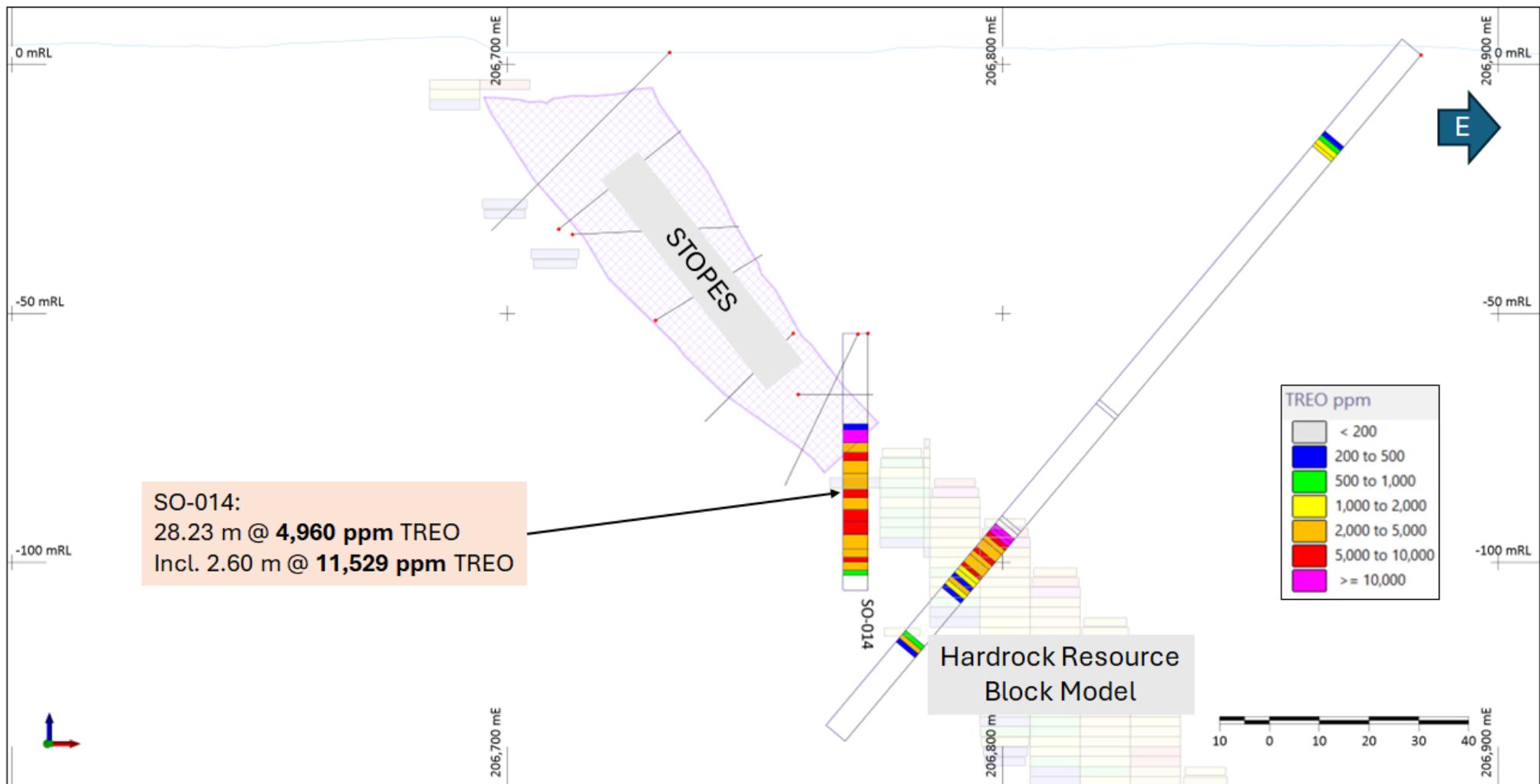


Figure 2. Cross section of SO-014 which intersected a wide zone of REE mineralisation below the historical Korsnäs mine stopes.

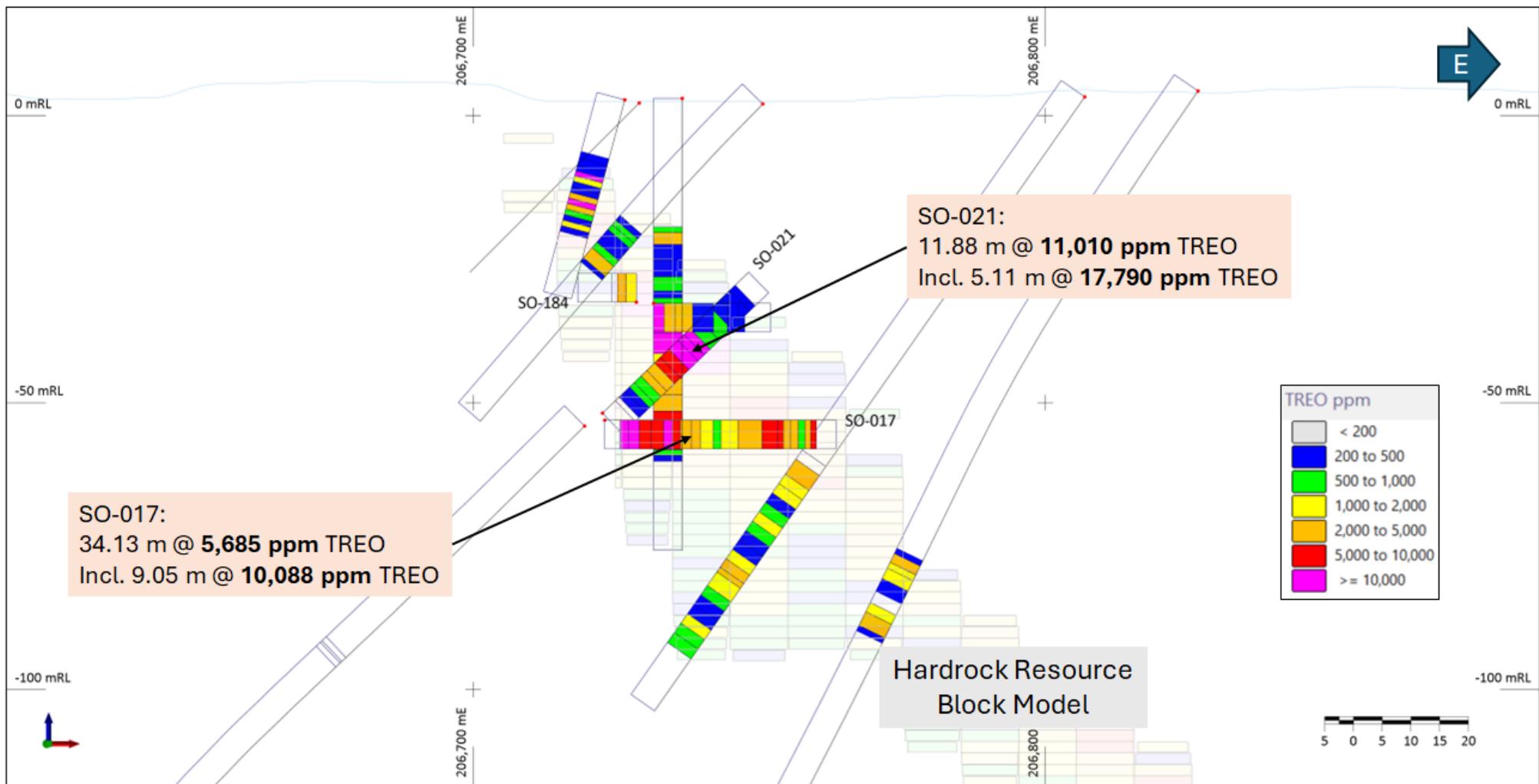


Figure 3. Cross-section of SO-017 and SO-021 which intersected thick zones of high-grade REE mineralisation located to the immediately to the south of the old Korsnäs mine. The mineralisation remains open along strike and at depth.

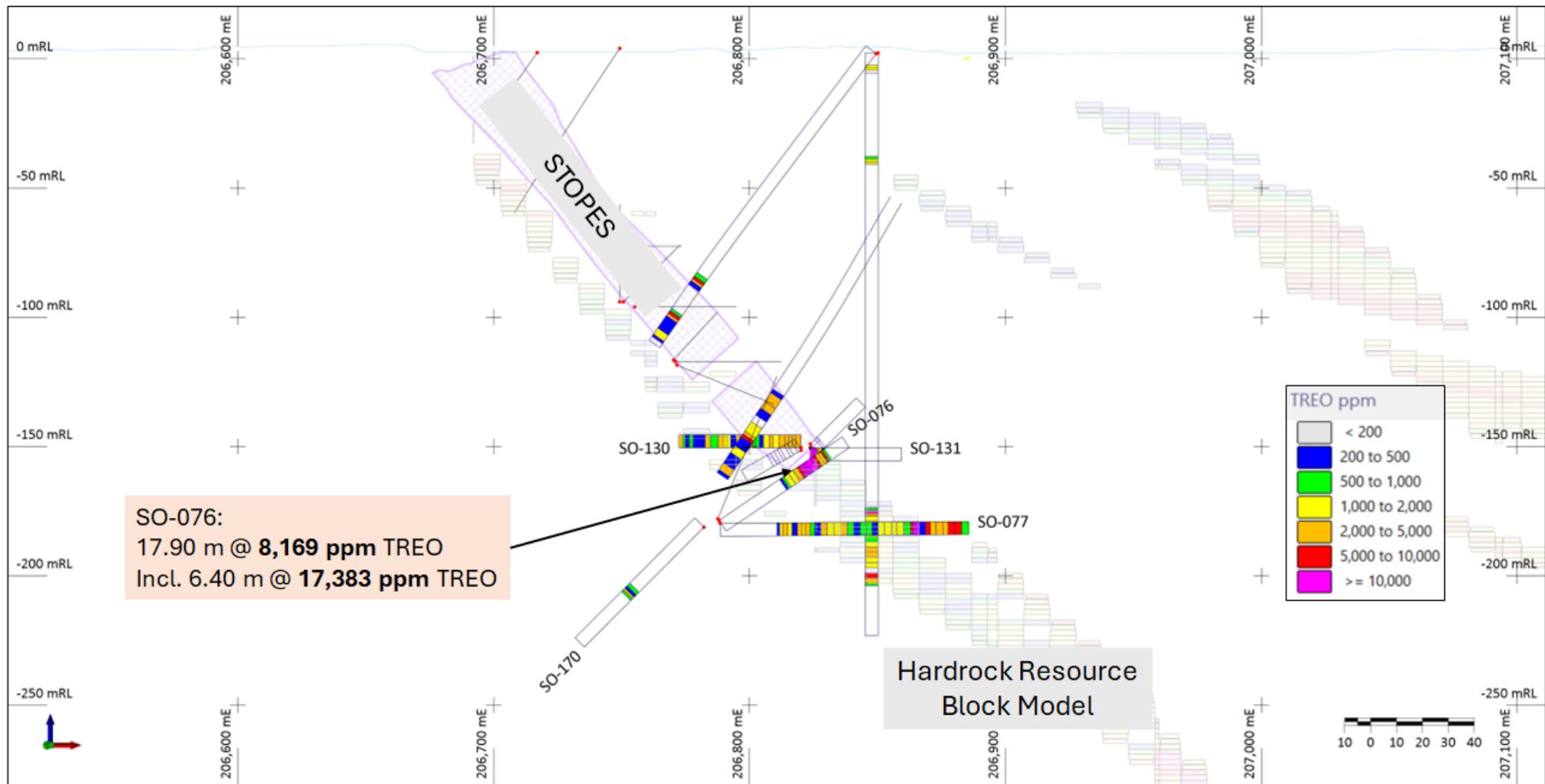
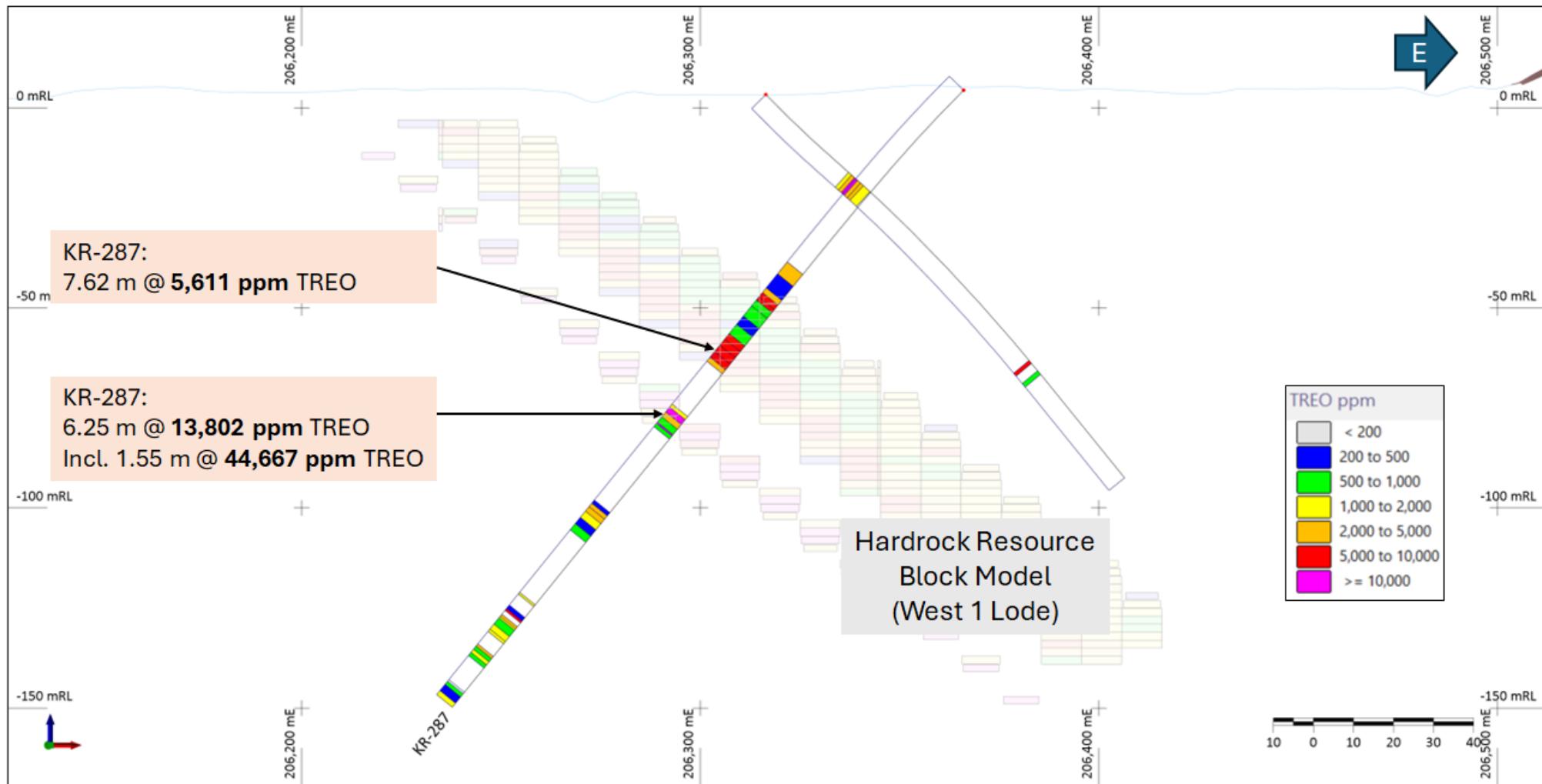



Figure 4. Cross-section showing results from SO-076, highlighting REE mineralisation extending down-dip with a near-true thickness of 17.9 metres. Several other underground diamond drill holes with recent assay results—SO-077, SO-130, SO-131, and S-170—are also displayed. The favourable geometry presents strong potential for underground mining, offering excellent extraction opportunities.

Figure 5. Cross-section of KR-287, a previously reported drill hole with additional sampling to refine high-grade intercepts. This hole highlights the discovery potential within an under-explored REE-mineralised carbonatite-skarn zone, located 400 metres west of and striking parallel to the Korsnäs mine target.

About Prospecch Limited

Founded in 2014, the Company focuses on mineral exploration in Finland and Slovakia, with a mission to discover, define, and develop critical elements deposits containing metals such as rare earths, lithium, cobalt, copper, silver, and gold. Prospecch is actively positioning itself to contribute to Europe's mobility revolution and energy transition. With a strong portfolio of prospective base and precious metals projects in Slovakia, and the recent focus on rare earth element (REE) projects in Finland, the Company is strategically aligned with the increasing demand for locally sourced minerals in Eastern and Northern Europe, regions that are highly supportive of mining. As demand for these critical elements grows, Prospecch aims to become a leading player in the European market.

For further information, please contact:

Jason Beckton
Managing Director
Prospecch Limited
+61 (0) 438 888 612

Jane Morgan
Investor Relations
jm@janemorganmanagement.com.au
+61 (0) 405 555 618

This announcement has been authorised for release to the market by the Board of Directors.

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Jason Beckton, who is a Member of the Australian Institute of Geoscientists. Mr Beckton, who is Managing Director of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

pjn12523

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>Historic: The Finnish government facility in Loppi houses the historical core from the Korsnäs project. The core is of BQ and AQ sizes. Prospective sampling was conducted consistently within the specified intervals. For cores that were never sampled before, a $\frac{1}{2}$-core sampling method was used, while for cores that had been previously sampled, a $\frac{1}{4}$-core sampling method was employed.</p> <p>Modern: HQ2 coring. $\frac{1}{4}$ cored using diamond blade core saw and sampled at nominally 1-m intervals through altered and mineralised zones</p>
<i>Drilling techniques</i>	<p><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Historic: Small diameter diamond drilling – approximately AQ and BQ size.</p> <p>Modern: HQ2 diamond drilling.</p>
<i>Drill sample recovery</i>	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<p>Historic: Core preserved at government GTK facility in Loppi.</p> <p>Modern: Core recoveries determined on a run by run basis. Mineralised core is generally more friable than fresh rock and minor core loss did occur. Overall core recoveries were judged as excellent.</p>
<i>Logging</i>	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p> <p><i>Whether logging is qualitative or quantitative in nature.</i></p> <p><i>Core (or costean, channel, etc) photography.</i></p> <p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p>The complete core was visually logged by the project geologist. RQDs and photos were taken of all core.</p> <p>Core is oriented where ground conditions permit and structural measurements taken.</p>
<i>Sub-sampling techniques and sample preparation</i>	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>$\frac{1}{2}$ or $\frac{1}{4}$ core cut with a thin diamond blade (due to the small diameter of the core).</p> <p>$\frac{1}{4}$ core field duplicated samples have been collected every 25th sample.</p>
<i>Quality of assay data and laboratory tests</i>	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p> <p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i></p>	<p>Historic: Samples are stored in the Loppi relogging facility. Core in good condition.</p> <p>Assays will be carried out by ALS, an internationally certified laboratory.</p> <p>Historic assays obtained from paper logs have no record of the analytical methods used nor any record of QAQC procedures. However, where we have modern assays covering the same intervals as the historic assays, the agreement is good. (e.g. historic assay: KR-289: 18.5m @ 11,100 ppm TREO from 51.85m vs. modern assay: 18.3m @ 13,201 ppm TREO from 51.7m). In the coming months there will be many more modern assays available, which will allow a better comparison.</p>

Criteria	JORC Code explanation	Commentary
		<p>Modern: Assays will be carried out by ALS, an internationally certified laboratory. Field duplicates were collected every 25th sample. ½ core retained destined for metallurgical test work. ¼ core retained in the tray. Core trays stored at mine site.</p>
<i>Verification of sampling and assaying</i>	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i></p>	KR-305, KR-306, KR-307, KR-309 and KR-310 twinned historic intersections and confirmed the historic information. KR-308 extended one of the Korsnäs mineralised structures (results reported previously)
<i>Location of data points</i>	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i></p>	<p>Historic: Hole locations determined from historical records and converted to ETRS-TM35FIN projection (EPSG:3067).</p> <p>Modern: All hole collars have been surveyed using a DGPS. A north-seeking gyro instrument was used for down-hole surveys.</p>
<i>Data spacing and distribution</i>	<p><i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i></p>	Only visible lead mineralisation was historically assayed. Prospecch is targeting broader zones of REE mineralisation.
<i>Orientation of data in relation to geological structure</i>	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	No bias is believed to be introduced by the sampling method.
<i>Sample security</i>	<i>The measures taken to ensure sample security.</i>	<p>Historic: Samples were collected by GTK personnel, bagged and immediately dispatched to the laboratory by independent courier.</p> <p>Modern: Samples were collected by Prospecch personnel, bagged and immediately dispatched to the laboratory by independent courier.</p>
<i>Audits or reviews</i>	<i>The results of any audits or reviews of sampling techniques and data.</i>	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</i></p>	<p>Prospecch Limited has 100% interest in Bambra Oy ('Bambra'), a company incorporated in Finland. The laws of Finland relating to exploration and mining have various requirements. As the exploration advances specific filings and environmental or other studies may be required. There are ongoing requirements under Finnish mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Prospecch's environmental and permit advisors specifically engaged for such purposes. The Company is the manager of operations in accordance with generally accepted mining industry standards and practices. The Korsnäs project's tenure is secured by Exploration Permit Application Number ML2021:0019 Hägg and Reservation Notification VA2023:0040 Hägg 2.</p>
<i>Exploration done by other parties</i>	<i>Acknowledgment and appraisal of exploration by other parties.</i>	The area of Korsnäs has been mapped, glacial till boulder sampled and drilled by private companies including and Outokumpu Oy.
<i>Geology</i>	<i>Deposit type, geological setting and style of mineralisation.</i>	45 degree dipping carbonate veins and anti-skarn selvedges within sub-horizontally foliated metamorphic terrain.

Criteria	JORC Code explanation	Commentary																																																																																																																							
Drill hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. <p>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</p>	<p>Drill Hole Collar Information ETRS-TM35FIN projection (EPSG:3067).</p> <p>Table of collar specifications of new holes reported are:</p> <table border="1" data-bbox="910 258 1453 631"> <thead> <tr> <th>HOLE_ID</th><th>EAST</th><th>NORTH</th><th>RL</th><th>AZIMUTH</th><th>DIP</th><th>FINAL_DEPTH</th></tr> </thead> <tbody> <tr><td>KR-237</td><td>207,850.19</td><td>6,979,569.54</td><td>3.00</td><td>275.30</td><td>-45.0</td><td>201.35</td></tr> <tr><td>KR-277</td><td>205,872.30</td><td>6,978,246.93</td><td>4.91</td><td>275.30</td><td>-45.0</td><td>200.70</td></tr> <tr><td>KR-287</td><td>206,365.47</td><td>6,978,200.83</td><td>4.41</td><td>275.30</td><td>-45.0</td><td>200.30</td></tr> <tr><td>SO-014</td><td>206,772.58</td><td>6,977,836.14</td><td>- 54.00</td><td>0.00</td><td>-90.0</td><td>51.56</td></tr> <tr><td>SO-017</td><td>206,723.24</td><td>6,977,765.28</td><td>- 53.06</td><td>95.37</td><td>0.0</td><td>40.29</td></tr> <tr><td>SO-021</td><td>206,722.86</td><td>6,977,765.35</td><td>- 51.83</td><td>95.17</td><td>44.0</td><td>35.37</td></tr> <tr><td>SO-076</td><td>206,788.55</td><td>6,977,960.52</td><td>-178.59</td><td>98.37</td><td>34.2</td><td>57.50</td></tr> <tr><td>SO-077</td><td>206,788.97</td><td>6,977,960.44</td><td>-179.69</td><td>98.27</td><td>0.4</td><td>96.10</td></tr> <tr><td>SO-121</td><td>206,824.24</td><td>6,977,969.50</td><td>-150.50</td><td>95.30</td><td>0.0</td><td>15.40</td></tr> <tr><td>SO-130</td><td>206,820.13</td><td>6,977,957.21</td><td>-150.50</td><td>275.30</td><td>0.0</td><td>47.25</td></tr> <tr><td>SO-131</td><td>206,823.73</td><td>6,977,957.17</td><td>-150.50</td><td>95.30</td><td>0.0</td><td>35.25</td></tr> <tr><td>SO-133</td><td>206,828.89</td><td>6,977,943.94</td><td>-150.20</td><td>95.30</td><td>0.0</td><td>24.45</td></tr> <tr><td>SO-170</td><td>206,782.73</td><td>6,977,960.82</td><td>-181.20</td><td>275.30</td><td>-45.0</td><td>65.50</td></tr> <tr><td>SO-171</td><td>206,650.54</td><td>6,977,922.92</td><td>-183.70</td><td>95.30</td><td>45.0</td><td>44.70</td></tr> <tr><td>SO-182</td><td>206,823.08</td><td>6,977,994.73</td><td>-150.25</td><td>275.30</td><td>0.0</td><td>30.10</td></tr> <tr><td>SO-184</td><td>206,728.92</td><td>6,977,766.85</td><td>- 32.50</td><td>275.30</td><td>0.0</td><td>10.20</td></tr> </tbody> </table>	HOLE_ID	EAST	NORTH	RL	AZIMUTH	DIP	FINAL_DEPTH	KR-237	207,850.19	6,979,569.54	3.00	275.30	-45.0	201.35	KR-277	205,872.30	6,978,246.93	4.91	275.30	-45.0	200.70	KR-287	206,365.47	6,978,200.83	4.41	275.30	-45.0	200.30	SO-014	206,772.58	6,977,836.14	- 54.00	0.00	-90.0	51.56	SO-017	206,723.24	6,977,765.28	- 53.06	95.37	0.0	40.29	SO-021	206,722.86	6,977,765.35	- 51.83	95.17	44.0	35.37	SO-076	206,788.55	6,977,960.52	-178.59	98.37	34.2	57.50	SO-077	206,788.97	6,977,960.44	-179.69	98.27	0.4	96.10	SO-121	206,824.24	6,977,969.50	-150.50	95.30	0.0	15.40	SO-130	206,820.13	6,977,957.21	-150.50	275.30	0.0	47.25	SO-131	206,823.73	6,977,957.17	-150.50	95.30	0.0	35.25	SO-133	206,828.89	6,977,943.94	-150.20	95.30	0.0	24.45	SO-170	206,782.73	6,977,960.82	-181.20	275.30	-45.0	65.50	SO-171	206,650.54	6,977,922.92	-183.70	95.30	45.0	44.70	SO-182	206,823.08	6,977,994.73	-150.25	275.30	0.0	30.10	SO-184	206,728.92	6,977,766.85	- 32.50	275.30	0.0	10.20
HOLE_ID	EAST	NORTH	RL	AZIMUTH	DIP	FINAL_DEPTH																																																																																																																			
KR-237	207,850.19	6,979,569.54	3.00	275.30	-45.0	201.35																																																																																																																			
KR-277	205,872.30	6,978,246.93	4.91	275.30	-45.0	200.70																																																																																																																			
KR-287	206,365.47	6,978,200.83	4.41	275.30	-45.0	200.30																																																																																																																			
SO-014	206,772.58	6,977,836.14	- 54.00	0.00	-90.0	51.56																																																																																																																			
SO-017	206,723.24	6,977,765.28	- 53.06	95.37	0.0	40.29																																																																																																																			
SO-021	206,722.86	6,977,765.35	- 51.83	95.17	44.0	35.37																																																																																																																			
SO-076	206,788.55	6,977,960.52	-178.59	98.37	34.2	57.50																																																																																																																			
SO-077	206,788.97	6,977,960.44	-179.69	98.27	0.4	96.10																																																																																																																			
SO-121	206,824.24	6,977,969.50	-150.50	95.30	0.0	15.40																																																																																																																			
SO-130	206,820.13	6,977,957.21	-150.50	275.30	0.0	47.25																																																																																																																			
SO-131	206,823.73	6,977,957.17	-150.50	95.30	0.0	35.25																																																																																																																			
SO-133	206,828.89	6,977,943.94	-150.20	95.30	0.0	24.45																																																																																																																			
SO-170	206,782.73	6,977,960.82	-181.20	275.30	-45.0	65.50																																																																																																																			
SO-171	206,650.54	6,977,922.92	-183.70	95.30	45.0	44.70																																																																																																																			
SO-182	206,823.08	6,977,994.73	-150.25	275.30	0.0	30.10																																																																																																																			
SO-184	206,728.92	6,977,766.85	- 32.50	275.30	0.0	10.20																																																																																																																			
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	<p>A minimum sample length is 1m generally but can be as low as 0.15m is observed in historical sampling.</p> <p>A lower cut off of 1,000 ppm was used to define reportable mineralised zones.</p> <p>No high-grade cutting was done.</p> <p>Total Rare Earth Oxide was reported which is defined:</p> <p>TREO = Total Rare Earth Oxides which is the sum of La_2O_3, CeO_2, Pr_6O_{11}, Nd_2O_3, Sm_2O_3, Eu_2O_3, Gd_2O_3, Tb_4O_7, Dy_2O_3, Ho_2O_3, Er_2O_3, Tm_2O_3, Yb_2O_3, Lu_2O_3 and Y_2O_3</p> <p>Neodymium plus Praseodymium Oxide:</p> <p>NdPrO = the sum of Pr_6O_{11}, Nd_2O_3</p> <p>NdPr enrichment % = $\text{NdPrO} / \text{TREO}$</p>																																																																																																																							
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</p>	<p>In general the holes have intersected the mineralised zone nearly normal to the host structure - any exceptions to this are noted individually.</p>																																																																																																																							
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</p>	<p>The location and results received for surface samples are displayed in the attached maps and/or tables. Coordinates are ETRS-TM35FIN projection (EPSG:3067).</p>																																																																																																																							
Balanced reporting	<p>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</p>	<p>Results for all samples collected in the past are displayed on the attached maps and the table in the body of the report.</p>																																																																																																																							
Other substantive exploration data	<p>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</p>	<p>No metallurgical or bulk density tests were conducted at the project by Prospech.</p>																																																																																																																							
Further work	<p>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<p>Prospech may carry out further drilling.</p> <p>Metallurgical test work is planned utilising modern samples</p>																																																																																																																							